Horn Speaker for a Crystal Radio

This horn speaker is an improvisation for my 'Loudspeaker Crystal Radio'.

Horn Speaker
It requires only 2 additional parts - a dustbin and a food container - with the crystal radio speaker itself serving as the driver.

In order to simplify the mounting, the speaker is made to drive from its rear while its front is sealed by the food container.

Horn Speaker details
Rubber based adhesive is used for assembly.

Audio output is considerably more than with the speaker in its normal enclosure.
_______________________________

Loudspeaker Crystal Radio

This is the speaker variant of my series-tuned crystal radio with an alternative detector.

Loudspeaker Crystal Radio
Replacing balanced armature headphones (impedance around a few hundred ohms) with a low impedance speaker required the use of an output transformer.

A power transformer, with its inherent thick conductors, appeared to be the ideal substitute for a low-loss output transformer.

Trials with transformers rated 230V/24V-2A, 230V/24V-5A and 230V/24V-15A proved the last one to be the best.

Series-tuned Loudspeaker 
Crystal Radio - Schematic
Aided by the perfect match offered by my 'Homebrew Horn Speaker' and 60' wire antenna, reception of the lone local 200kW 612kHz AM broadcast station, located 20km away, was excellent.

Performance was also quite good using the parallel-tuned configuration.

Parallel-tuned Loudspeaker
Crystal Radio - Schematic
Related post: Compact Loudspeaker Crystal Radio
_______________________________

Alternative Detector for a Shunt-fed Crystal Radio

After significantly improving the performance of my first crystal radio using a series inductor, the focus was on a replacement for the OA5 which would give a higher output.

OA5 diode
The base-emitter and base-collector junctions of germanium audio transistors like AC130, OC74, AC127, 2N61, AC188 and AD162 were tried out. However, they were all only as good as the OA5.

Germanium transistors
As luck would have it, when the 2N61 was being tried out, an accidental short between its base and emitter leads resulted in a tremendous increase in signal strength. Hence the OA5 in the crystal radio was replaced with the base-emitter-shorted 2N61.

Using a wire antenna 60' long, the lone local 612 kHz, 200 kW AM broadcast station could now be heard even at a distance from the headphones! Headphone current measured using a 1mA FSD 60 Ω meter, was 725 μA.


Crystal Radio - Schematic
The other transistors too gave identical results with their base and emitter leads shorted. Results with the base and collector leads shorted trailed close behind.

A dedicated unit of equal performance was built using a 3" x 3" x 1½" electrical bakelite box as an enclosure.

Series-tuned Crystal Radio Enclosure
Screw terminals were attached on the rear for connecting the antenna, earth and headphones. 

Inside the Series-tuned Crystal Radio
Lugs on the screw terminals facilitated soldering of the transistor, moulded inductor and earth link. 

When subsequent trials on series-fed crystal radios showed a degradation in their performance,
it was concluded that germanium transistors, with base/emitter interconnection, outperform germanium diodes only in shunt-fed crystal radios.

Related post: Current-operated 'S' Meter for a Crystal Radio
_______________________________

Harmonic Interference from a Crystal Radio

One day, in spite of my Minimalist Converter being disconnected, harmonics of the local 612 kHz broadcast station were still being received in the shack receiver.

That was indeed surprising. Then, after some thought, realisation dawned that the Crystal Radio on the shack table could be the cause.

This was confirmed by disappearance of signals when the the ground connection to the crystal radio was removed.
Crystal Radio - Schematic
Then, on a feeling that the minimalist converter would display identical behaviour, its output was next connected to ground.

Minimalist Converter - Output grounded
The signals returned.

It was my first-hand experience of harmonic interference!
_______________________________

Series-tuning for a Crystal Radio

Adding series-tuning was an afterthought to improve the performance of my first crystal radio.

Ferri Loopstick & PVC Gang Condenser
The loopstick (90 turns of Litz wire, close-wound on a 2" length of  ¼" ferrite rod) and variable (a 500+500 pF PVC gang condenser) were wired on a bread board and connected in series with the
antenna lead-in.
Series-tuned Crystal Radio - Schematic
With the plates of the condenser nearly fully meshed, the only local broadcast station on 612 kHz was received with a considerable increase in volume.

However, both the loopstick and variable were too big for the crystal radio enclosure.

Trials, with a fixed 1000pf capacitor in series with available fixed inductors, were unsuccessful.

Ultimately, a 200 μH moulded inductor was found to work quite well, with the 60' wire antenna itself providing the capacitance.

Moulded Inductor
It was easy to solder it right at the antenna socket.

Moulded Inductor-tuned Crystal Radio - Schematic
Related post: My first Crystal Radio
_______________________________